NASA

SpaceX landed its rocket… on a barge!

By Benjamin Vermette

SpaceX launched its ninth unmanned cargo resupply mission to the ISS on April 8, 2016 from Cape Canaveral, Florida. (Alan Walters / awaltersphoto.com)

SpaceX launched its ninth unmanned cargo resupply mission to the ISS on April 8, 2016 from Cape Canaveral, Florida. (Alan Walters / awaltersphoto.com)

 

The ambitious company SpaceX launched its ninth unmanned cargo resupply mission to the International Space Station (ISS) on April 8 2016 from Cape Canaveral, Florida. The mission, dubbed CRS-8, will be forever written about in history books.

CEO of Tesla Motors, PayPal, Solar City and SpaceX, young billionaire entrepreneur Elon Musk proved his earnest intention of installing a permanent rocket-reusability strategy by landing, for the first time in human history, the first stage of its Falcon 9 rocket on a drone-like barge-ship.

Note that it’s not the first time they succeeded in landing the Falcon 9 on something; they did it on steady ground in Cape Canaveral in December 2015 (click here to read more about this mission).

The following youtube video posted by SpaceX captures their most recent feat. 

Uploaded by SpaceX on 2016-04-09.

Following a perfect launch on Friday afternoon by the Falcon 9 rocket, everyone was becoming excited for another ‘experimental’ rocket landing on a barge. After deploying its Dragon cargo spacecraft into orbit and towards the ISS, the first stage flipped over, found the right trajectory, slowed down from 20,000 km/h, and succeeded in landing on the barge in a non-explosive fashion.

It wasn’t SpaceX’s first try to complete this feat; they’ve already dedicated other rockets to this. In other words, the rockets blew up trying to land on the barge (read more about these attempts in my previous articles: Hubble, SpaceX, Falcon, Messenger and More... and SpaceX Failed to Land Their Rocket on a Barge-ship).Elon Musk called them RUDs (Rapid Unscheduled Disassembly).


But now, it’s a different story. Launching a rocket, deploying gear into space intended for some humans on the ISS, then landing the remaining part of the rocket, all inside 9 minutes, how can this even be physically possible? Well, ladies and gentlemen, I give you Elon Musk.

“It's another step toward the stars,” he said during a press conference.

It is indeed, but what does it mean for the future of space exploration?

Landing the rocket on steady ground, as they did in December 2015, is great. However, landing it at sea is essential for SpaceX’s reusability strategy. After launch, the rocket is hundreds of kilometers east of the Cape. Landing it on an autonomous drone-ship not only saves fuel but when mastered, will also diminish risks.

Adding extra fuel to a rocket for landing may not seem cost-effective, but building a rocket from scratch is way more expensive. As a matter of fact, building a Falcon 9 costs $60 million, while refueling it is only about $250,000.

Musk predicts his reusability strategy to contribute cutting the spending “100-fold”. According to his predictions, SpaceX’s launches’ fees could shrink from $61.2 million (compared to $225 million for its competitor ULA) down to $600 000. This 44 year-old visionary hopes that one rocket will be able to support up to 20 spaceflights.

Even if the space industry-leading company SpaceX performed an out-of-this-world accomplishment, its main mission was of course to respect its contract with NASA, which is to deliver goods to the ISS when needed.

As you may have guessed, this is exactly what they did, the Dragon cargo spacecraft that successfully launched on April 8th was flawlessly delivered to the ISS, where it arrived and docked on April 10th.

But what exactly was on the Dragon spacecraft?

First, there was equipment for an interesting science investigation, which is called the Rodent Research-3-Eli Lilly Investigation.

When humans reside in space, gravity no longer affects their body. This results in decreases in bone density, muscle strength and heart-pumping efficiency. This is why astronauts need to exercise so much in space!

This investigation will use mice to better understand the effects of a particular antibody known for its capability “To prevent muscle wasting in mice on Earth”.

Another science experiment, called Micro-10, “will study fungi in space for the purpose of potentially developing new medicine for use both in space and on Earth”. A couple similar science experiments, generally concerning the study of the human body in space, are now possible due to the arrival of the required equipment on the ISS.

But the major experiment that the Dragon spacecraft carried, was not typical. The Bigelow Expandable Activity Module (BEAM) is an inflatable module that attaches to the station. It is only a prototype (for now), but the long-term goal is for BEAM to be used in NASA’s future missions to Mars.

After installation on April 16, the inflatable structure grew to attain almost 13 feet in length while having a 10.5-feet diameter.

It is scheduled to stay on the space station for a period of two years, during which the astronauts of the ISS will enter the module three-to-four times a year to retrieve data from the sensors onboard.

If everything goes as planned, Bigelow Aerospace, BEAM’s contractor, might launch another of their prototypes into space by 2020. But this time, it won’t be BEAM, but what they call the autonomous B330 expanding habitat. 

A depiction of how the B330 prototype is expected to look like in 2020. (Bigelow Aerospace)

A depiction of how the B330 prototype is expected to look like in 2020. (Bigelow Aerospace)

As a matter of fact, Bigelow Aerospace announced, on April 11, that they have discussed a partnership with the private rocket manufacturer United Launch Alliance (ULA) to launch their B330 prototype in 2020.

The idea of an inflatable space module is promising: it takes less room on a rocket, but once in space, it provides a place for astronauts to live and work. NASA may even consider these modules when the time comes to plan a journey to Mars!

While the ISS is studying medicine in microgravity, hence its motto “Off the Earth for the Earth”, it is also considering prototypes for long-duration spaceflights and studying the effects it would have on a human.

The journey to Mars is happening!

 

 

 

By Benjamin Vermette

The above is an artist's depiction of the view from "Planet Nine". Caltech/R. Hurt (IPAC)

The above is an artist's depiction of the view from "Planet Nine". Caltech/R. Hurt (IPAC)

Is there a 9th planet in our solar system?

Caltech researchers Konstantin Batygin and Mike Brown have found evidence of a ninth planet in our solar system. 

The planet, dubbed Planet Nine, would have a mass 10 times that of Earth and take 10,000 to 20,000 years to make a single revolution around the Sun, hence its late discovery (which shouldn’t be called a discovery yet). Planet Nine would be orbiting the Sun 20 times further out than does Neptune – the outermost planet –, if it exists, and on a highly-elliptical orbit.

Note that the planet was not observed directly: strange behaviours of some Kuiper Belt Objects (KBOs) lead to the conclusion that a ninth planet might be required. "Although we were initially quite skeptical that this planet could exist, as we continued to investigate its orbit and what it would mean for the outer solar system, we become increasingly convinced that it is out there," says Batygin, an assistant professor of planetary science. "For the first time in over 150 years, there is solid evidence that the solar system's planetary census is incomplete."

Evidence and a mathematical model was enough to get some astronomers – amateurs and professionals – started on a quest for the observation of Planet Nine.

The whole story started in 2014, when a student of Mike Brown found out that orbital features of some KBOs (small celestial objects beyond Pluto) were similar and thus suggested the presence of a small planet to explain this phenomenon.

Brown, an observer, took the problem to Batygin, who is a theorist, and for a year and a half they worked the problem out. Brown observed the sky as well as the KBOs while Batygin worked out what was possible on the physical standpoint using math and physics. “I would bring in some of these observational aspects; he would come back with arguments from theory, and we would push each other. I don't think the discovery would have happened without that back and forth," says Brown.

Shown here is the possible orbit of Planet Nine along with other distant bodies of our solar system with highly-eccentric elliptical orbits. Caltech/R. Hurt (IPAC) 

Shown here is the possible orbit of Planet Nine along with other distant bodies of our solar system with highly-eccentric elliptical orbits. Caltech/R. Hurt (IPAC) 

Note the irony: Mike Brown, potential discoverer of Planet Nine (if it gets officially discovered), was one of the active astronomers who led to Pluto losing its ‘planet’ status, hence his Twitter handle @plutokiller.

Even if the scientific community isn’t sure the planet exists yet, Brown showed a little confidence on his Twitter profile: “OK, OK, I am now willing to admit: I DO believe that the solar system has nine planets,” he wrote.

Evidence is evidence. Astronomers worldwide are on it: stay tuned for facts.


New Canadian vision system for the ISS

On January 7 the Government of Canada awarded a $1.7-million contract to Neptec Design Group Ltd. of Ottawa, Ontario, to design and build a new high-technology space vision system for the International Space Station (ISS).

Mounted on Dextre, the vision system will be used to support the inspection and maintenance of the ageing structure of the ISS, as small meteorites and space debris regularly hit the Station. It’s not the first time that Neptec’s vision systems are used in space: it previously designed a laser camera system that, mounted on Canadarm2, was used to inspect the tiles of the retired US Space Shuttle while it was in space.

Using a combination of three sensors – an infrared and a high-definition camera, as well as a 3D laser – the vision system will also assist spacecrafts as they dock with the ISS.

Showing Dextre on the right held by Canadarm2 and holding the vision system (www.asc-csa.gc.ca). 

Showing Dextre on the right held by Canadarm2 and holding the vision system (www.asc-csa.gc.ca). 

As the system will launch to the ISS in 2020, its imagery will be available to the public, offering a new view of the station no one ever saw before.

“The Government of Canada is pleased to contribute this new technology that combines these strengths, while giving the world a new vantage point on the International Space Station," said the Honourable Navdeep Bains, Minister of Innovation, Science and Economic Development.

This investment enforces Canada’s role as a reliable space-technology innovator and as a driving force of the world’s space activities.


SpaceX failed to land their rocket on a barge-ship

The promising private company SpaceX, owned by ambitious billionaire Elon Musk, succeeded in landing its rocket on a steady landing platform in Cape Canaveral on December 21st (Refer to my previous post on January 15 for details on this.)

But that was ‘easy’, they wanted a more challenging test: landing their rocket on a drone-like barge-ship, sailing freely on the sea, for example. 

On January 17, after flawlessly launching and deploying the Jason-3 ocean-mapping satellite, the first stage of SpaceX’s Falcon 9 rocket called the ball. Hovering through 3- to 4-meter waves, the football-field-sized landing platform waited patiently for the booster to perform the final ‘touchdown’. 

The booster found the platform, deployed its landing legs and landed for a couple seconds, and then this happened. The linked video, posted on Elon Musk's instagram page, shows footage of Falcon 9's landing attempt.

This was the third time SpaceX tried to land the Falcon on a ship, and it was almost a charm.


As Musk said on his Instagram and Twitter accounts, a defective collet might have been the mishap’s cause. Collets are intended to secure the locking of the landing legs. As the leg was not locked tightly enough, it could not support the aircraft's weight, and down it went. The root cause may be that condensation from heavy fog at launch got in there and then froze when it got colder in the upper atmosphere, perhaps cracking the collet.

This is a hypothesis, but one thing is for sure: “Definitely harder to land on a ship. Similar to [land on] an aircraft carrier [versus on the ground]: much smaller target area [on the ship], [which is] also translating & rotating,” Musk tweeted.

It’s still a success to me. Launching a rocket at high speeds and making it deploy a satellite takes some innovation, especially when it’s a private company. But making the rocket flip-over in space and come back to Earth from more than 100 km of altitude, making it slow down and find the barge using its fins to control itself and deploy its landing legs is indeed a success to me.

“It’s a freakin’ technological triumph that they can get anywhere near a landing,” wrote Phil Plait, blogger for Slate.


The Dream Chaser has won the ISS resupply contract award!

On January 14, after delaying the announcement multiple times, NASA finally awarded the second round contract of resupplying the International Space Station (ISS) to three commercial cargo companies. The first round contract was awarded to SpaceX and Orbital ATK in 2008.

The Dream Chaser, previously designed to be a human-carrying spacecraft, was adapted to be unmanned for the possible future cargo missions to the ISS, in case it won the second round contract. And it did!

This amazingly designed spaceship, owned by Sierra Nevada Corporation, will join SpaceX and Orbital ATK, the two other recipients, in 2019, date when the contract will begin service.

Designed by a 50-year-old soviet space shuttle mockup, the Dream Chaser will deliver up to 5500 kg of cargo to the ISS per trip. It will launch on top of a rocket, dock with the station, and when it’s ready it will detach from the orbiting lab and perform a runway landing, just like the American Space Shuttle did.

Image of the cargo version of the Dream Chaser docked to the ISS. (SNC)

Image of the cargo version of the Dream Chaser docked to the ISS. (SNC)

Since the Dream Chaser has never flown into orbit, Sierra Nevada said they would drop the spacecraft from a helicopter for it to perform a landing demonstration in the coming months.

Originally, the contract was intended to only have two recipients, but having three is more advantageous. “One of the considerations from an operational standpoint with ISS is it’s really important to have more than one supply chain, and multiple offerers means that at any given time, the sequence of flights could be one Sierra Nevada, SpaceX, Orbital ATK, so if you lose one, you have the ability for another one being right after it from a dissimilar redundancy, or a different supplier, so that’s a big help to us,” said Kirk Shireman, NASA’s International Space Station program manager at the Johnson Space Center in Houston.

The contract provides a minimum of six flights per selectee, from 2019 to 2024, but “it is likely we will buy more than 18 flights, so we have three winners, and if we need more than 18 flights, then we’ll talk about what happens on those flights,” said Shireman.

The exact value of each recipient’s contract is not precisely known, but Orbital ATK said in a press conference that its six original flights are valued at $1.2 to $1.5 billion USD.

 

 

By Benjamin Vermette 

Landing of first stage of SpaceX's Falcon 9 on December 21, 2015. (spacex.com)

Landing of first stage of SpaceX's Falcon 9 on December 21, 2015. (spacex.com)

Third time’s a charm: SpaceX landed their rocket! 

After two failed attempts in January and April 2015, the private company SpaceX finally succeeded in landing their… rocket!

Owned by young billionaire Elon Musk, SpaceX rewrote history books on December 21st as they performed a vertical landing of the first stage of their Falcon 9 rocket back at Cape Canaveral, about 10 minutes after it launched.

The second stage of the rocket (the upper part) carried 11 small communication satellites while the first stage (the bottom part) had 9 SpaceX Merlin engines to power them into orbit.

Once the first stage burn was over, the two stages cleanly separated while the bottom one turned around and started an engine burn to slow down as it was headed to the landing zone in Florida.

As it was trying to steady itself, the first stage deployed four landing struts and touched down safely at precisely 9 minutes 44 seconds after it departed: 

It may seem an easy thing to do, but don’t fool yourself: nothing in space is easy. As Miles O’Brien, science reporter, pointed out in an interview with CNN, “this is like balancing a broom pole on your nose, and only harder, lots harder.”

Still not convinced? Look at this video Musk took after the landing, it shows how huge the rocket is!

Minutes after the rocket landing, the second stage completed the mission: it successfully deployed the 11 communication satellites. What a wonderful comeback for SpaceX as their last mission on June 28 was a complete disaster: the rocket blew up in the sky and all the cargo was lost (Read my previous column for more details on this). 

Such a performance is a major breakthrough: it reduces launch cost while creating a 100% reusable rocket!

"Falcon 9 back in the hangar at Cape Canaveral." Musk said on Instagram on January 1st. "No damage found, ready to fire again."

We need private companies like SpaceX to lead the way in attempting risky and futuristic feats such as a vertical rocket landing: only then will modern spaceflight evolve.

Congrats SpaceX on such a milestone!


Einstein’s theory of General Relativity turns 100… Relative to Earth

“Time travel used to be thought of as just science fiction, but Einstein's General theory of Relativity allows for the possibility that we could warp space-time so much that you could go off in a rocket and return before you set out.” - Professor Stephen Hawking

Basically everything you know about gravity is wrong – unless you’re a physicist, in which case I’m sorry for the offense.

In 1905, shortly after working as a patent clerk, the young Albert Einstein proposed a new theory: the Special theory of Relativity, or STR (not to confound with the General theory of Relativity).

Briefly, it proposes a connection between space and time, which translates into a breathtaking phenomenon. For instance, according to STR, the faster you go, the slower time passes (note that this was tested multiple times, and turns out to be true). Imagine: you’re in a spaceship, going 50% the speed of light (about 150 000 km/s) and you decide to go around our solar system for a while. After a certain amount of time (relative to you) you decide to come back on Earth for a drink (because you’re feeling it). However, when you come back, it is possible, depending on the amount of time you just spent at high speeds, that humanity is gone, or that the Earth is gone, or just that your grandkids are older than you. That’s simple STR fun facts.

However, gravity didn’t seem to apply to Einstein’s STR, so he decided to create a whole new theory which completely changed the world’s way of seeing space and time. 10 years later, on November 25th, 1915, Einstein published his final paper on his theory of General Relativity, just before lecturing his colleagues at the prestigious Prussian Academy of Sciences in Berlin.

The major breakthrough of General Relativity from a popular standpoint is that it defines gravity. We know Isaac Newton discovered, in the XVIIth century, a mysterious force: gravity. He wrote a couple mathematical laws describing this force (which is still used today) without further knowing what it was.

Einstein showed – I recall, 100 years ago – that space is something, like a fabric, and it can get bent, distorted, ripped apart, or compressed, by matter. And the bending of space is what causes gravity.

So forget everything you heard in high school (maybe not): two masses don’t attract each other. Masses bend space around them; think of it like a bowling ball on a mattress. What happens if you slide a golf ball next to the bowling ball on your mattress? It curves. Its path will change, like the Moon around the Earth, like the Earth around the Sun, and so on. Did its path bend because of a force of attraction between the two? No! It followed its natural motion.

You don’t stand on the Earth because you are attracted by it, you are just falling, and following your natural motion.  The Earth merely stops you from falling.

Anyway, just try to generally see it that way: matter tells space how to bend, and space tells matter how to move.

In sum, Einstein showed space can warp, causing gravity, and he also showed time can warp. So, Einstein’s theory of General Relativity just turned 100 relative to Earth. At another place in space, in may only be 1 year old!

Everything is… relative!


1st mirror now installed on promising James Webb Space Telescope

With a primary mirror 6 times larger in area than Hubble’s, the James Webb Space Telescope (JWST) will be the biggest and most powerful astronomical observation-object of all times. With its full structure as big as a tennis court, it will be placed between the Earth and the Sun at a Lagrange point, 1.5 million km from Earth, as Hubble orbits at about 250 km of altitude. Currently in the process of construction, it has a ticket to launch in 2018. 

A full scale model of the James Webb Space Telescope, the largest space telescope to ever be built, was on display in Austin, Texas in the Southwest Interactive Festival. (wikipedia)

A full scale model of the James Webb Space Telescope, the largest space telescope to ever be built, was on display in Austin, Texas in the Southwest Interactive Festival. (wikipedia)

Recently, towards the end of November, NASA successfully installed the first of 18 mirrors on the JWST, initiating a major construction breakthrough.

The engineers of NASA’s Goddard Space Flight Center in Maryland strategically used a robot arm to install a 1.3-meter hexagonal-shaped gold-plated mirror. Along with another 17 of its kind, this mirror will form what is called the primary mirror, which is 6.5-meter long (for comparison, this is 2.7 times larger than Hubble’s one). The full assembly of these mirrors should be completed towards the beginning of 2016. 

Assembly of the telescope's mirror in NASA's Goddard Space Flight Center in Maryland. (nasa.gov)

Assembly of the telescope's mirror in NASA's Goddard Space Flight Center in Maryland. (nasa.gov)

“After a tremendous amount of work by an incredibly dedicated team across the country, it is very exciting to start the primary mirror segment installation process," said Lee Feinberg, JWST optical telescope element manager at Goddard. "This starts the final assembly phase of the telescope."

The gold coating on the mirrors were chosen for its capacities to reflect infrared light, as the mirrors are primarily made of lightweight beryllium, chosen for its usefulness in extremely low temperatures.

The JWST is a major technological achievement, and will surely answer big cosmological questions, such as: how did the universe begin and evolve, how will it end (or will it end?), how did our solar system form and will help astronomers and scientists on the search for extraterrestrial life.

We, Canadians, can be proud: the Canadian Space Agency works with NASA and the international science community to make this project reality! 


Japanese spacecraft finally enters Venus’ orbit 5 years after its 1st try

What a show of interplanetary mechanics-application and perseverance.

The Japanese Aerospace Exploration Agency (JAXA) finally succeeded – after a first try five years ago to the day, in December 2010 – to place its Akatsuki spacecraft in Venus’ orbit.

Back then, on its initial try on December 6 2010, Akatsuki – which means “Dawn” – brushed past Venus at high speeds on what was supposed to be a lovely orbital catch. JAXA’s engineers later determined that this failure was due to the probe’s main engine incapacity to generate power in reason of a cracked valve in the propulsion system.

The following five years was for Akatsuki somehow a bright “dark” period. In orbit around the Sun, it was depressively waiting for the mission’s officials to make a decision about its fate. But as you may have guessed, the team didn’t give up: they gave Akatsuki a second opportunity to complete its tasks.

On December 6, 2015 this time, the spacecraft relied on the firing of its minor thrusters to escape the Sun’s orbit and head towards the cloud-covered planet. And it worked! Even if the probe isn’t as close as previously planned to Earth’s sister, it will still be able to fulfill its scientific objectives – as long as it stays in good shape – such as studying the planet’s greenhouse gas-filled and toxic atmosphere.

It’s like being on a commercial flight and trying to land a second time 5 years after the first attempt! 

Fake photos and a problematic parachute: This month in space

By Benjamin Vermette

Space pictures aren’t always real

A lot of well-established and popular accounts on Facebook, Twitter and Tumblr recently posted this picture, claiming to be taken from Mars, and asserting that the three vertically-aligned lights in the sky were Earth, Venus and Jupiter. If you conducted a search for ‘mars skyline’ you’ll immediately see the image.

The problem with this photo is that it isn’t real.

Phil Plait is an American astronomer and he loves debunking ‘bad’ astronomy. He analyzed this image and maintains that the landscape color is too saturated. Compare the landscape of the photo to real ones taken by the Curiosity rover, and the difference is immediately clear.

Also the sky is the wrong color; Mars’ sky is a blue/grey.

The picture contains too many clouds and they also look like they’ve been digitally designed by software.

If that isn’t enough to prove the image wrong, well, let’s look deeper!

If you look very carefully, at the bottom left of the picture, you can see the letters ‘NE’, which stands for ‘northeast’. This acronym is what you see when you use software programs like SkySafari or Starry Night to display the sky. It points out the cardinal directions.

This means the picture is an image generated by a computer as a representation of a real scene.

However, if you want to see a real picture of Earth taken from Mars, the Spirit rover took one in 2004 (and, unsurprisingly, the real thing is much less visually dramatic).

A real photo depicting how Earth appears from Mars. (NASA photo). 

A real photo depicting how Earth appears from Mars. (NASA photo). 

RS-25 engine test

The fledgling NASA Space Launch System (SLS) is a new-generation rocket that will carry astronauts to asteroids and eventually to Mars in the 2030s.

Four RS-25 engines and two solid rocket boosters will carry SLS in the vacuum of interplanetary space, where no human has yet ventured.

The RS-25 engines are simply former space shuttle main engines operating at higher power levels to provide the additional thrust needed to power the SLS. “While we are using proven space shuttle hardware with these engines, SLS will have different performance requirements,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

On June 11 at NASA’s Stennis Space Center in Mississippi, a third static RS-25 fire test was performed, the previous ones being in January and at the end of May. For 500 seconds, the engine successfully burned and therefore completed a step towards the SLS first test launch, scheduled for 2017.

The next test was on June 25, also at Stennis Space Center — but this time the engine burned for 625 seconds.

Three additional tests were scheduled to occur sometime in July and August before the initial series is completed.

These tests are critical towards sending men to Mars and perhaps back on the moon, so let’s hope everything goes as planned.

Pluto’s pockmarks

Pluto is a mysterious world.

The NASA New Horizons probe was launched in 2006 and performed its Pluto flyby on July 14, 2015, becoming the first ever human-made object to visit the dwarf-planet.

As New Horizons got closer, a more detailed view of the small world was made available — and it surprised everyone.

(NASA photo). 

(NASA photo). 

The spots you see (picture on the right) originally appeared blurred together due to low resolution (picture on the left), however, as the Pluto-explorer probe got closer and took higher-resolution pictures, it was able to show four distinct spots.

On June 27, when the spots were discovered, some speculated they were impact sites, where meteorites would have impacted. But they look a bit too evenly spaced. And after all, they’re all over the same hemisphere of Pluto.

Some think the spots are geysers or other phenomenon arising from the idea that Pluto might be geologically active. 

However, the pictures are too poor in details to really identify the spots.

Watch out ISS, there’s rocket debris!

The International Space Station. (NASA photo). 

The International Space Station. (NASA photo). 

Carried into orbit by a space shuttle in 1998, the International Space Station (ISS) keeps supporting high-end scientific research. This $150-billion laboratory is the product of more than 17 years of nation-collaboration, and this is why it needs to be protected.

On June 8, the ISS conducted a pre-determined debris avoidance manoeuvre, to get out of the way of a used Minotaur rocket part. The debris was tracked the morning before, allowing ISS’ teams a day to gather additional data.

On Monday, tracking data showed that the path of the ISS was not sufficiently changed, so the rocket debris still presented a menace. Therefore, the ISS’ teams decided to use the thrusters of Progress M-26M, a capsule docked at the station, to clear the debris from entering the imaginary safety zone around the ISS, where no debris are ‘allowed’ to enter.

Progress’ engines burned for about 5 minutes, putting the ISS in a slightly higher orbit and increasing its velocity by 0.3 metres per second. 

A good team effort resulted in a successful debris avoidance manoeuvre, avoiding a collision with a part of a used Minotaur rocket, launched from NASA Wallops, Virginia, in November 2013.

Lately, a great number of debris and satellites are dropping from their original orbit and may present a danger to the ISS.

NASA’s new Mars lander test: Parachute failure

The Low-Density Supersonic Decelerator (LDSD) program is projected to cost about $290 million (CAD).

LDSD is a 3.4-ton lander designed to allow NASA carrying more massive payloads on the surface of Mars. LDSD will carry heavy rovers and payload at supersonic speed in Mars’ atmosphere, decelerate it and perform a soft landing on the red planet’s surface.

On June 8, NASA tested for the second time its ‘flying saucer’, as they like to call LDSD. High above Hawaii, at 180,000 feet of altitude to be more precise, LDSD fired solid-fuelled Star 48 retro-rockets, designed by Orbital ATK, to slow the lander from Mach 4 to Mach 2.35, which is a safe speed to deploy a giant 100-foot-wide supersonic parachute.

The thing is, the parachute did not deploy as expected. Okay, yes it did, however, one second after deployment, the chute ripped apart in the supersonic airflow. “A preliminary look at our loads data indicate that the parachute developed full, or nearly full, drag up to the point where that damage can be observed,” said Ian Clark, the experiment’s principal investigator at NASA’s Jet Propulsion Laboratory. A camera onboard the lander “shows what looks to be a largely, if not fully, intact parachute at full inflation,” Clark added.

The lander, being retrieved from the Pacific Ocean. (NASA photo).

The lander, being retrieved from the Pacific Ocean. (NASA photo).

The splashdown in the Pacific Ocean damaged the 20-foot-wide lander, which has gained a speed higher than expected, due to the ripped chute.

Despite the parachute failure, NASA is confident in finding a solution to its problem. “We very much want to have these failures occur here in our testing on Earth rather than at Mars,” said Mark Adler, program manager for NASA’s LDSD project. “So it’s a success in that we’re able to understand and learn more about the parachutes, so we can get confidence and have highly reliable parachute for when we have a large mission going to Mars, where we can’t do anything about it.”

LDSD’s high-end technology is just an example of how NASA has an ambitious future on Mars.

A month of successes and setbacks in Space

By Benjamin Vermette

Progress M-27M Gone Wrong

On April 28, 2015, an uncrewed Progress capsule was launched from Kazakhstan by the Russian Space Agency (Roscosmos). The mission, dubbed Progress M-27M, was meant to deliver 2,357 kg of food and about 800 kg of other material to the International Space Station. However, as the title indicates, the capsule did not manage to deliver the expected shipment.

Following lift-off on a Soyuz rocket, the capsule started spinning out of control as it entered orbit.

 

(You can see the Earth and the sun about once every 3 seconds)

At launch, every system was nominal. Shortly after, when separation from the third stage occurred, ground controllers immediately knew something was wrong: only two of the five communication antennas had deployed. Only moments after that, the Russian Progress capsule started spinning out.  

  M-27m Progress burning up in Earth's atmosphere

  M-27m Progress burning up in Earth's atmosphere

On April 28, the problem didn’t seem lethal; Roscosmos’ officials delayed Progress’ rendezvous with the ISS by about five days (it was originally planned to dock about six hours after launch). Afterwards, they learned the spacecraft was spinning; as a consequence the docking was delayed indefinitely until the problems could be fixed.

The Russian Space Agency tried to find a solution, in vain. A few days later the mission was declared a failure, and the spacecraft was condemned to a fiery death (a fall and combustion in Earth’s atmosphere).

On May 8, the Progress spacecraft re-entered Earth’s atmosphere. The capsule was big, so not all the material was burned up.

“Given the fact that material inside is somewhat protected during the early parts of re-entry, maybe somewhere [between] 2,500 to 3,500 pounds (on a total of more than 7000 pounds) of material may have survived,” said Bill Ailor, an expert on spacecraft re-entries. However, “much of this material had itself been broken into smaller pieces and spread along a footprint several hundred miles long,” he added.

What caused the capsule’s demise? Roscosmos doesn’t know for certain, but believes it was a small explosion or a tank rupture.

In Video: SpaceX Abort Test

SpaceX is a private ‘space’ company helping resupply the International Space Station (ISS), and its success is growing. At the end of May, it gained the rights to launch US government satellites into space. On May 21, its Dragon capsule returned safely to Earth after a month-long stay on the ISS.

However, the most impressive and decisive thing it accomplished last month, was its ‘pad-abort’ test on May 6. This test was to determine whether SpaceX could carry astronauts into space in the future (it can’t right now because of regulations, just like any other private company).

The experiment consisted of testing its pad-abort.

Imagine you’re an astronaut and you’re on the launch pad in a SpaceX rocket about to be sent in orbit. Suddenly, everything goes wrong. Let’s say the rocket is on fire and it’s about to explode. You don’t have time to get out of it and run away, so you push a button – okay, it may be a little more complicated than that – to activate the pad-abort. Pushing that button will activate small rockets on your capsule, which will launch you into the air, far away from the rest of the about-to-explode rocket. 

Included is a video of the May 6 SpaceX pad-abort test. Tip: try not to blink, because the capsule goes incredibly fast. The water dump you see at the beginning is to suppress fire and to ‘absorb’ the vibrations, in a way.

Note: had astronauts been onboard, accelerating from 0-160 km/h in 1.2 seconds, they would have felt 6Gs (that’s six times their weight) crushing them into their seats.

The test was impressive, but above all, it was a critical milestone for SpaceX in its journey to being able to send commercial crew in space alongside NASA. Congrats SpaceX and Elon Musk for a successful flight!  

No, A Particular Planetary Alignment Won’t Cause An Earthquake

On May 28, a huge 9.8 magnitude earthquake shook California.

Okay, no it didn’t. But according to one YouTube personality, it was supposed to — all because of a potential ‘planetary alignment’ (which also didn’t come to pass). But it did cause some speculation as to whether or not a planetary alignment could actually cause an earthquake here on earth.

This whole story comes from one somewhat famous YouTube account, Ditrianum Media. I would have included the video where the host explains, in a sincere way, the famous natural catastrophe that would have occurred on May 28, 2015, in California. However, on May 29 – the day after the prophesized earthquake – this video was deleted from the Internet.

Phil Plait, an American astronomer, has done the math and discovered that all of the planets in our solar system combined have a gravitational influence on Earth about 50 times weaker than the moon does. The moon, it should be noted, doesn’t trigger earthquakes.

In the video, the speaker claims the planets will “energize” Earth. However he gives no precise information on what that means. And in astronomy, there is no such thing as planets ‘energizing’ each other.

The YouTube host even implied Nostradamus being part of the magic recipe causing the seism.

In conclusion, rest assured that planetary alignments can’t cause earthquakes, they don’t make you float, and neither can the supermoon. And astrology is baloney, to be polite.

X-37B And LightSail

On May 20, an Atlas V rocket launched from Cape Canaveral Air Force Station in Florida, carrying the mysterious and top-secret Boeing X-37B space plane for its fourth spaceflight, as well as the promising LightSail satellite.

The X-37B is an US Air Force classified spacecraft that resembles the Space Shuttle. Here is everything we know about it (source: Space Shuttle Almanac).

fo0523_boeing_x_37b_940_ab5.jpg

 

However, we know a lot more about LightSail, a technology developed by the Planetary Society, of which Bill Nye (The Science Guy) is the CEO. Packed in a sandwich-sized CubeSat in Atlas V’s payload, the prototype LightSail carries no fuel. Literally, sunlight propels this technological achievement.  

Actually, light pushes on objects — this is call radiation pressure — you weigh more during daytime than at night (don’t worry, it’s not even close to a pound). It turns out, in space, where there is no atmosphere to counteract light, the pressure is enough to push a sail 20 times thinner than a human hair. Of course, the sail is attached to a small satellite.  There you have it; a space probe powered by sunlight. The mission is just to test the sail (and as of today, everything is going as planned) and to “empower the world’s citizens to advance space science and exploration,” according to the Planetary Society.

Let’s hope everything goes well and perhaps the prototype will show humanity a new way of exploring space. High five, scientists!

How NASA Helps Nepal Disaster’s Victims

On April 25, a 7.9 magnitude earthquake occurred in Nepal, killing more than 8,000 people.

Even though NASA is often thought of as just a ‘space’ agency, its technologies can help disaster victims, and it did in Nepal.

A NASA device called FINDER (Finding Individuals for Disaster and Emergency Response) uses microwave radars to detect heartbeats of animals (usually humans) trapped in the aftermath of a seism and other natural catastrophes.

FINDER helped find and rescue four men trapped under 10 feet of bricks, mud and other debris in Nepal.

“Of course, no one wants disasters to occur, but tools like this are designed to help when our worst nightmares do happen.” said Dr. Reginald Brothers, under-secretary for Science and Technology at the US Department of Homeland Security. “I am proud that we were able to provide the tools to help rescue these four men.”

The four rescued had been trapped under these bricks for days in the shaken town of Chautara. Using the life-saving gadget, rescuers were able to detect two heartbeats under two different structures and in that way were able to save the men.

FINDER has proven its capabilities to detect heartbeat from people hidden under 30 feet of light debris, 20 feet of concrete and at a distance of 100 feet in open space.

“FINDER exemplifies how technology designed for space exploration has profound impacts to life on Earth,” said Dr. David Miller, NASA’s chief technologist.

As a matter of fact, this NASA-gadget has solidly supported its contractor’s slogan: ‘Off the Earth for the Earth.’  

Does earth need another space race?

By Benjamin Vermette

Mars: Why We Need To Go There

In 1969, humanity set foot on the moon for the first time. Neil Armstrong and Buzz Aldrin were the first two of 12 lucky and optimistic Apollo astronauts to walk on the moon.

The iconic image of Buzz Aldrin's visor reflecting Neil Armstrong during their milestone walk as the first humans on the moon. 

The iconic image of Buzz Aldrin's visor reflecting Neil Armstrong during their milestone walk as the first humans on the moon. 

Back then, the majority of NASA’s fans and even NASA officials thought we would set foot on Mars before the end of the century. However, we didn’t. Why? What was Apollo really about? Since 1972, no man has ventured further than Low Earth Orbit. Is it a sign of maturity? No. The United States made exploring the moon a priority because of the space race against the Russians during the Cold War. It was not a curious character that pushed NASA to send men to the moon —  it was patriotic pride.

For now, no space race pushes NASA to send a man to Mars, so we’ll have to wait longer. The only people that can carry humanity further than Low Earth Orbit are ambitious explorers, like Elon Musk, CEO of SpaceX, the first private company to send liquid-fuel rockets into orbit and to resupply the International Space Station (ISS). He is hell-bent on sending a man to the Red Planet, and he is capable of great things: when SpaceX started in the business, it had more than a few sceptics. To be more realistic, everybody thought SpaceX would fail miserably. Today, as it turns out, the company has a contract with NASA to resupply the ISS, and launches their Falcon9 rocket. They are even trying to land the first-stage of the Falcon9 on a ship.  

But why is Elon Musk so obsessed with going to Mars? In a conversation with Phil Plait, an American astronomer, he simply said, “Humans need to be a multi-planet species.” Behind this statement is perhaps the fear of staying on Earth; a single catastrophe could wipe humanity out. But Musk isn’t doing this for himself — we won’t have time to colonize Mars before he dies, unless he finds a way to live longer (then again, he is capable of many things) — he is doing this for his sons, and for the future of the human species. Maybe Musk was inspired by Konstantin Tsiolkovsky, the father of modern rocketry, who thought “the Earth is the cradle of humanity, but one cannot live in the cradle forever.”

It may seem like science fiction to you, but for Elon Musk, it isn’t. The problem is not getting to Mars itself — it’s hard, but not impossible — it’s to convince the human that this goal is realistic and achievable.

Many people believe Musk will get to Mars. NASA, however, doesn’t think the same way. It believes nobody will get to Mars without its help, as it plans to visit the planet in the 2030s. “No commercial company without the support of NASA and government is going to get to Mars,” said Charles Bolden, NASA Administrator. 

 NASA’s New Horizons: Phase-2 Started For July Pluto Encounter

Launched in January 2006, New Horizons is now at Pluto’s doorstep. Actually, it’s so close to it that it took the first ever coloured image of Pluto and its giant moon Charon. It will be the first spacecraft ever to reach this mysterious dwarf-planet.

The unmanned space probe will perform Pluto’s closest approach in July 2015, and the scientists who make up New Horizons’ mission group are starting to get excited.

That excitement likely surged at the beginning of April, when the time to start Approach Phase 2 arrived. Phase 2 will last until June 23 — just before the anticipated encounter.

Approach Phase 2 consists of the spacecraft making use of four optical navigation campaigns, with the help of the Long-Range Reconnaissance Imager (LORRI), and the Multi-spectral Visual Imaging Camera (MVIC).  

Each of these systems will provide information about Pluto’s icy environment and help scientists find the best and safest path for New Horizons to take as it comes into contact with Pluto.

“We are going to be starting taking long exposure images of the whole region around Pluto, so that we can see if there are any new moons that might be producing any debris that could be dangerous to the spacecraft, or if we actually see rings of debris themselves orbiting Pluto in regions that might be dangerous to us,” explains John Spencer, a member of the mission’s science team.

A large community of scientists and amateur astronomers have been waiting patiently for almost a decade for New Horizons to provide astounding answers to some of Pluto’s mysteries, as the space probe carries out its final approach (traveling 1.2 million km each day). 

Coloured Images Of Pluto And Ceres

As New Horizons approaches Pluto, NASA’s Dawn spacecraft entered Ceres’ orbit on March 6, 2015, becoming the first space probe to do so.

For a few weeks after having entered orbit, Dawn couldn’t take pictures of Ceres, because it was orbiting the far side (away from the sun) meaning the surface was too dark. It was only in the middle of April that Dawn sent the first coloured image of Ceres, orbiting between Mars and Jupiter.  

Further away, 115 million km from Pluto, NASA’s New Horizons did the same and sent back the first colour photo of Pluto and its largest moon, Charon, taken on April 9.

An illustration of NASA's New Horizons Spacecraft 

An illustration of NASA's New Horizons Spacecraft 

 

NASA Will Capture An Asteroid Rock

On March 25, 2015, National Aeronautics and Space Administration (NASA) announced in more details its plan for the Asteroid Redirect Mission (ARM).

The ARM is necessary to test new capabilities and elements needed to take humans beyond Low Earth Orbit, including Mars. “ARM is an important part of the overall mission of taking humans further into space,” said Robert Lightfoot Jr., NASA associate administrator.

When the mission was first proposed in 2013, the plan was to move a small asteroid into a stable orbit around the moon. However, the plan has changed a little bit to attempt a mission that has increased applicability for future missions and has better potential for planetary protection techniques.

If all goes to plan, the ARM un-crewed spacecraft will launch in 2020 on a two-year journey to land on a pre-targeted asteroid. Once on the surface of the asteroid, it will capture a boulder up to 4 meters in diameter using its robotic arms.

It would then be placed in the asteroid’s orbit with the captive boulder in tow, during a period that may last up to a year. This technique will help NASA understand and develop techniques for moving an asteroid off a course towards the Earth, if the necessity should ever arise.

By 2025, the ARM spacecraft will, with the asteroid rock in its bag, place itself and the rock in an orbit around the moon. Next, a crew of two astronauts will fly in an Orion spacecraft on an approximately 25-day mission to rendezvous with the un-crewed ARM spacecraft and to collect samples of the boulder. “The option to retrieve a boulder from an asteroid will have a direct impact on planning for future human missions to deep space and begin a new era of spaceflight,” said Lightfoot Jr.

 Russia & US To Build New Space Station After ISS

After the end of the International Space Station’s current operation, which is scheduled to culminate in 2024, NASA and the Russian Space Agency (Roscosmos) are planning to build a new space station.

“We have agreed that Roscosmos and NASA will be working together on the program of a future space station,” Roscosmos chief Igor Komarov said during a news conference. However, many rumours circulate in the space-o-sphere suggesting this may not be entirely true. 

The discussions were held in Baikonur cosmodrome in Kazakhstan on March 27, during the launch of the One-Year ISS Mission.

Not only would the Russians and Americans build a new station, but they would also co-operate on a joint Mars project. This is extremely ironic, as they fought in a space race during the Cold War less than 40 years ago.

“Our area of cooperation will be Mars,” said Charles Bolden, NASA Administrator. “We are discussing how best to use the resources, the finance, we are setting time frames and distributing efforts in order to avoid duplication.”

Again, this is not confirmed. However, how fun would it be to see two opposing nations co-operate in a sector they’ve always fought over? 

HUBBLE, SPACEX FALCON, MESSENGER and MORE...

By Benjamin Vermette

CANADA’S CONTRIBUTION TO SPACE TELESCOPES

April 24, 1990 saw Space Shuttle Discovery launch from Kennedy Space Center with the school-bus-sized Hubble Space Telescope in its payload. More than five years after the last of five shuttle servicing missions, the NASA community (and the whole scientific community around the world) celebrated Hubble’s 25th anniversary on April 24, 2015.

One hundred and fifty-six thousand gigabytes of scientific data transmitted to Earth later, Hubble’s officials are starting to think about its future, and it’s not a straightforward question.

NASA: Hubble alongside Discovery

NASA: Hubble alongside Discovery

Hubble’s lifespan “is the biggest question we keep getting from people, because everybody is used to something on Hubble breaking every five years,” explained Jason Kalirai, a researcher at the Space Telescope Science Institute in Baltimore.

Even though it’s getting old, Kalirai said NASA’s Goddard Space Flight Center engineers are doing a wonderful job managing the telescope’s systems. For now, they estimate that Hubble will keep orbiting in Low Earth Orbit, exploring the mysteries of the universe until, at least, its 30th anniversary.

When Hubble eventually does break down, does NASA actually have a plan to replace it? Of course! The James Webb Space Telescope (JWST) was first scheduled to launch in 2011, but its launch was put off until October 2018. Unfortunately, the project isn’t just delayed, it’s also vastly over budget.

The JWST is a much bigger and more powerful space telescope than Hubble; it’s as big as a tennis court with a 6.5-meter-diameter primary mirror, compared to the 2.4 meter diameter mirror on the Hubble. Overall, the increased the JWST’s collecting area up to seven times more than Hubble.

When finally launched, the JWST will be placed 1.5 million km from the surface of the Earth, “The JWST … isn’t going to look back towards Earth, it’s going to look out into space and take these brilliant pictures and send them back,” explained Industry Minister James Moore. “So we’ll have a view into space that no other human-beings have ever seen before, and that’s incredibly exciting.”

NASA: Outside the enormous mouth of NASA's giant thermal vacuum chamber, called Chamber A, at Johnson Space Center in Houston, engineers and technicians prepare the chamber for testing the James Webb Space Telescope.

NASA: Outside the enormous mouth of NASA's giant thermal vacuum chamber, called Chamber A, at Johnson Space Center in Houston, engineers and technicians prepare the chamber for testing the James Webb Space Telescope.

Canada is part of the three major contributors to get the JWST into orbit: NASA and the European Space Agency make up the other two. “What if I told you we were going to build a new space telescope? What if I told you Canada was helping to build that telescope?” asked Canadian astronaut Jeremy Hansen.

The Canadian Space Agency is providing JWST a Fine Guidance Sensor (FGS) as well as the Near-InfraRed Imager and Slitless Spectrograph (NIRISS), one of the Webb’s four science instruments. Both were designed, built and tested by the Canadian Space Agency.

What is an NIRISS? The light we can see is composed of what is called visible light. There are, however, many other kinds of light, such as infrared light. For instance, infrared light can offer astronomers different sources of information. Many celestial objects, like brown dwarfs and enormous red giant stars, emit mostly infrared light.

NIRISS will also have unique capabilities to find the earliest and most distant object of the Universe, such as the first galaxies ever formed.

The integration of FGS and NIRISS required CSA to add $2.6 million to its contract with COM DEV International Ltd., where the FGS and NIRISS are built and tested.

The Canadian contribution guarantees Canadian astronomers a slice of the action where the observations of space and time by the Webb telescope are concerned. “It’s going to open up a whole new world of scientific discoveries and new ways of looking at the future … It’s going to be a fantastic time of discovery for all Canadians,” said Industry Minister James Moore.

 

Federal Budget 2015: ISS Commitment Extended to 2024

On April 21, 2015, Minister of Finance Joe Olivier presented the 2015 Canadian federal budget to the Canadian House of Commons.

The budget assumed Canada’s implication in the International Space Station (ISS) until 2024. After previous commitments by NASA and the Russian Space Agency (Roscosmos), both the primary contractors of the station, Canada’s decision to extend its participation in the ISS until 2024 was confirmed.

NASA

NASA

As a consequence of this, Canada is responsible for 2.3% of the operating costs of the United States-led segment. That means Canada has the rights to use 2.3% of these module’s resources. For comparison, Japan holds 12.8% of the segments’ rights; European Space Agency (ESA) 8.3%; and NASA pays the remaining 76.6%. The Russians finance their own segments.

Japan and ESA officials said they are thinking of reducing their station’s holding rights. Also, neither has yet confirmed their commitment to the ISS beyond 2020. Does that mean Canada will take greater responsibilities within the space station?

 

SpaceX CRS-6: Still No Cigars

SpaceX is a private company that helps to resupply the International Space Station (ISS) with basic necessities and science-related equipment.

On April 14, 2015, they launched their 6th unmanned Dragon cargo spacecraft to resupply the ISS, something that needs to be done each 90 days or so. This mission, named SpaceX CRS-6, was postponed multiple times. To be honest, I can’t remember one time when a SpaceX launch wasn’t delayed.

SpaceX likes to try risky and out-of-the-ordinary things. For a second time, they tried to land the first stage of their Falcon 9 rocket on a drone barge, a feat that nobody has ever accomplished.

The first attempt was almost successful, but the first stage ran out of hydraulic fluid causing it to explode. The Falcon 9 rocket has two stages: the first one, also the biggest one, is on the bottom and powered by nine SpaceX Merlin engines. The second stage carries the Dragon spacecraft and is powered by one Merlin engine.

The launch was a success, and then the first stage separated from the second stage about three minutes after launch, as expected, and began falling back toward the landing platform.

After the considerable challenge that is landing a rocket, SpaceX wants the first stage to stand up on the barge.

Take a look at what happened after the second attempt.

Close, huh? The 14-story booster steadied for a brief moment on the “autonomous spaceport drone ship,” as SpaceX likes to call it, before toppling over and causing an impressive explosion caused by an issue with an engine throttle valve.

Everything else went perfectly. Astronaut Samantha Cristoforetti, onboard the ISS, grappled the Dragon spacecraft with Canadarm2 on April 17. The payload, carrying more than 4,300 pounds of supplies and other material to support multiple scientific experiments, was delivered successfully to the ISS.

SpaceX’s next attempt to land the first stage of another Falcon 9 rocket will be in June.

R.I.P.: NASA’s MESSENGER Spacecraft

Since March 2011 NASA’s MESSENGER spacecraft has been cruising in Mercury’s orbit. It became the second mission to reach Mercury, the first planet starting from the Sun, after Mariner 10’s 1975 flyby.

NASA

NASA

MESSENGER, acronym for MErcury Surface, Space ENvironment, GEochemistry, and Ranging, helped a lot in characterizing the chemical composition of Mercury’s surface, studying the nature of Mercury’s magnetic field, determining the size and state of the core, and solved many other unprecedented scientific mysteries about the smallest of the four rocky planets. In four years of orbit, it has sent over a quarter of a million images of Mercury back to Earth.

Launched on August 3, 2004, MESSENGER conducted its final orbital manoeuvre on April 6, 2015. It ran out of fuel quickly as the Sun was close by and constantly changing MESSENGER’s orbit.

This lack of propellant lead to the death of the spacecraft: MESSENGER was expected to crash into the planet’s surface in late April or early May. “The sun is pulling on it. The planet is pulling on it. It’s just physics. It has to crash,” said Thomas Zurbuchen of Michigan’s University.

This was inevitable, and the scientists who were part of the MESSENGER group understood it even at the dawn of the mission’s planning. They even took advantage of it! During its hard-to-control orbit, the Mercury-exploring spacecraft went as low as 5km from the surface of the planet, sending back incredibly high-resolution pictures.

MESSENGER successfully completed its mission: to unmask the secrets of Mercury. “We’re at the end of a really successful mission, and we can’t do anything anymore to stop it from doing what it naturally wants to do,” continued Thomas Zurbuchen.

On April 30, 2015, NASA’s MESSENGER spacecraft crashed into Mercury’s surface at 3.91 km/second, after traveling 7.8 billion kilometres over 11 years.

From Sky to Space: Recapping a month of discoveries

by Benjamin Vermette

Alien life in the solar system? A month of discoveries leaves unanswered questions

In the hunt for extraterrestrial life, we’ve turned to our own cosmic backyard.

Last month saw a series of discoveries that offer tantalizing hints of life in our solar system.

On March 6, NASA published a study showing strong evidence that Mars once had a vast ocean comparable to our Arctic Ocean. Up to a fifth of the planet may have been covered in water for millions of years. In other words: enough time for life to evolve.

The discovery was made by scientists at NASA’s Goddard Space Flight Centre in Maryland, using an infrared telescope to study water molecules on the planet. Their observations point to the historic presence of an ocean in the Northern Hemisphere that would have been two kilometers deep in places.

Today, however, the planet is a dry and barren rock. Most of the water has long since gone into space, or possibly gone into the ground.

But it isn’t just water that’s been found on Mars.

Last December NASA’s car-sized Curiosity rover detected atmospheric methane on the planet’s surface — a significant discovery, since methane is a gas that’s produced by living organisms on Earth. It’s also thought Saturn’s moon Titan may have oceans of liquid methane, which could support life.

On March 11, astronomers working with NASA’s Cassini spacecraft announced the discovery of a warm ocean on the south pole of Enceladus, another of Saturn’s moons. The water’s warm temperature is principally due to gravitational friction from the pull of Saturn and its other moons, resulting in hydrothermal activity.

Jonathan Lunine, a planetary scientist at Cornell University who works with Cassini, likened the hydrothermal activity to the environment that gave rise to life on Earth. The discovery pits it as the number-one contender for alien life in our solar system.

A day later, officials manning the Hubble Space Telescope declared the largest moon in our solar system — Ganymede, which orbits Jupiter — may be hiding an ocean 150 km below its crust.

Then, on March 24, it was announced that Curiosity had found another ingredient for life on Mars: nitrogen. Making up 80 per cent of our own atmosphere, nitrogen is a gas that living organisms can’t do without.

Despite these exciting clues, we still can’t make any hard and fast statements about extra-terrestrial life in our solar system. We can, however, add Enceladus, Mars and Ganymede to the list of 20 other places – and counting – where water has been found in our solar system.

Watching a supernova explode – multiple times

Early last month, NASA released a shot of something extraordinary in a galaxy far, far away: a supernova — otherwise known as an exploding star.

What made this shot so special? It’s the first time that the explosion has been captured multiple times at once. That’s right, the four pricks of light that are pointed out in the  image below are actually the same star.

Arrows indicate the four separate locations where the Refsdal supernova is visible simultaneously (Photo: NASA)

Arrows indicate the four separate locations where the Refsdal supernova is visible simultaneously (Photo: NASA)

But how can we pick one star out of a multi-billion-star galaxy, let alone see it four times? Thanks to the process of nuclear fusion, the same process that allows our sun to produce light and heat, we can. Stars fuse hydrogen into helium, helium into carbon, carbon into oxygen, neon, and other heavier elements: this process is known as nuclear fusion. When a massive star runs out of fuel, it explodes. While exploding, it releases enormous amounts of energy and material into space. This is what we call a supernova. A supernova is therefore brighter than an entire galaxy; this is why we can pick one star out of the billions surrounding it in space.  

Why did this one show up four times simultaneously? As Albert Einstein proved, big objects can bend space, the way our sun bends space around itself due to its gigantic gravity and mass.

Imagine a big bowling ball on a big sheet of paper, where the bowling ball is the object of significant mass and the sheet of paper represents space. You can imagine the curve that would take the sheet of paper. This is exactly the shape space takes around stars, black holes and galaxies. When light passes through curved spaces, it bends.

The supernova in the picture is in a spiral galaxy more than 9 billion light-years from Earth. On its 9-billion-year trip to Earth, the light from the star passed through a galaxy cluster, which meant the light bent.

Picture this while looking at the image: some of the star’s light was not headed towards us and if it had continued its route straight ahead, the Hubble Space Telescope wouldn’t have seen the supernova. But while passing through the galaxy cluster, the supernova’s light was bent towards us because of the high gravity of that cluster (due to the mass of stars and gases, as well as dark matter).

This effect — known as gravitational lensing — is very rare. This was one of the first times a supernova has been seen under the effect.  

It really threw me for a loop when I spotted the four images surrounding the galaxy — it was a complete surprise,” said Dr. Patrick Kelly of the University of California, who authored a recent paper discussing the phenomena.

 

Liftoff!

March 27 saw the liftoff of a year-long mission to the International Space Station. NASA astronaut Scott Kelly and Russians cosmonauts Mikhail Kornienko and Gennady Padalka tool off on board a Soyuz spacecraft. They’ll return home March 2016.

NASA administrator Charles Bolden says the mission is critical to advancing plans to one day send a man to Mars. “We’ll gain new, detailed insights on the ways long-duration spaceflight affects the human body,” he said. The mission will place Padalka in the number-one spot for most time spent in space by anyone in history.

 

Liftoff, part 2

March 11 saw the testing of NASA’s Space Launch System, a launch vehicle that will hopefully put a man back on the moon, and one day on Mars. The rocket is designed to carry two extra boosters powered by solid fuel; last month’s testing used one of these boosters.

The test took place in the desert of Utah, where a stationary firing of the rocket was performed. The test, known as Qualification Motor 1, or QM-1, lasted two minutes and six seconds, with the booster flaming out of schedule a little bit.

 

Found: the largest and brightest black hole ever

It’s estimated our solar system is 13.5 billion years old and about a billion years after that a monster black hole formed.

But it wasn’t until earlier this year that scientists discovered it. A black hole is a region of space with such a strong gravitational pull that no particle can escape — not even light particles.

This particular black hole has a mass 12 billion times that of our sun, making it the largest and most luminous one ever discovered. It’s known as a supermassive black hole (SMBH). It’s believed SMBHs lurk in the center of almost every large galaxy.

But how can the biggest black hole also be the brightest one?

Although you can’t actually see a black hole, you can see what’s happening around it. As matter is pulled in towards a black hole, the gravitational pull creates energy, which in turn produces x-ray emissions. The bigger it is, the greater the potential that matter being sucked in will leave a colossal visual footprint.

The discovery of the SMBH, known as SDSS J010013.02+280225.8, has left some scientists rethinking the early period of our cosmos. Forming such a large black hole so quickly is hard to interpret with current theories,” said Fuyan Bian, of the Australian National University. “Current theory is for a limit to how fast a black hole can grow, but this black hole is too large for that theory.”

There’s no indication yet on how the discovery may alter that theory.

Asteroid 2010 TD54's path through the solar system (Photo: NASA

Asteroid 2010 TD54's path through the solar system (Photo: NASA

Demystified: Earth’s (other) moon

In case you were wondering, the Earth does not, in fact, have a second moon.

Various news sources, such as the U.K.’s Daily Mail, have recently taken to describing Asteroid 2014 OL339 as Earth’s other “moon”. Let’s take a closer look at Asteroid 2014 OL339. Is it turning around the Earth? Yes. But is it actually orbiting the Earth (the way our moon does)? No.

Asteroid 2014 OL339 is actually orbiting the sun along a highly elliptical (oval-shaped) orbit that sends it past the Earth, Mercury and Venus. By contrast, our moon does orbit Earth; they interact through mutual gravitational attraction.

In other words, there’s a difference between orbiting Earth and simply turning around Earth. So, why the impression that the asteroid is in Earth’s “orbit”? It turns out 2014 OL339 orbits the sun in 364.92 days. Which means that, by coincidence, it orbits the sun in roughly the same time that Earth does.

So no, Earth doesn’t have a second quasi-moon. But you knew that from grade school, right?

 

A planet with … four suns?

Do you remember the beginning of the original Star Wars movie? Early in the film, a young Luke Skywalker, soon to leave his home planet, is seen wistfully observing a particularly stunning sunset — a sunset, as it happened — with two suns.

Turns out that this detail wasn’t simply the stuff of fantasy. While our solar system only has one parent star (the sun) two-star systems are actually much more common. Triple-star systems are very rare, but not unheard of. And four-star systems? Even more so.

In early March, researchers from the Palomar Observatory in California published their findings on a planet that’s part of a four-star system. It’s only the second planet ever to be found in such a system. Dubbed 30 Ari, it’s located in the constellation Aries. It’s also enormous: about 10 times the mass of Jupiter.

Unfortunately, it’s too hot to be habitable, due to its close proximity to the system’s primary star. It was previously thought that the system only had three stars, but thanks to advances in observational techniques, the fourth was recently confirmed. Recent studies may indicate that planets in quadruple star systems are less rare than previously thought. “About four percent of solar-type stars are in quadruple systems,” says Andrei Tokovinin of the Cerro Tololo Inter-American Observatory in Chile.

The first four-star planet, KIC-4862625, was discovered in 2013 by amateur scientists using public data from NASA’s Kepler mission. 

Life on Mars, spacewalks, comets and more

By Benjamin Vermette

VOYAGER 1 / PALE BLUE DOT

The Voyager 1 spacecraft was launched from Cape Canaveral on September 5, 1977 to study the outer solar system. Now traveling at a velocity of 61,000 km/h, it is the farthest space probe from Earth. A gold-plated audiovisual disc is attached to it carrying photos of the Earth and its life forms, scientific information, spoken greetings from different cultures around the Earth and a medley “Sounds of Earth” that includes sounds of whales, babies crying and a collection of music ranging from Mozart to Chuck Berry.

In 2012, Voyager 1 entered interstellar space, which is what we call the space between the stars, but what is that disk doing there? It would serve as an informational snapshot of life on Earth in the event that the spacecraft is found by intelligent life forms from other planetary systems.

On February 14, 1990, American astronomer Carl Sagan convinced NASA to use Voyager 1’s camera to take a picture of the Earth across a great expanse of space, more precisely from a distance of 6 billion kilometres.

See that pale blue dot? This is our home, the Earth, condensed into less than one pixel. This revolutionary image that changed our way of seeing Earth and humanity just turned 25 years old this past February. 

See that pale blue dot? This is our home, the Earth, condensed into less than one pixel. This revolutionary image that changed our way of seeing Earth and humanity just turned 25 years old this past February. 

“Twenty-five years ago, Voyager 1 looked back toward Earth and saw a pale blue dot, an image that continues to inspire wonderment about the spot we call home,” said Ed Stone, project scientist for the Voyager mission. The picture also inspired Carl Sagan to write one of the most beautiful and famous passages known, called “Pale Blue Dot”:

“From this distant vantage point, the Earth might not seem of any particular interest. But for us, it’s different. Consider again that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. […] The Earth is the only world known, so far, to harbour life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. […] To me, it underscores our responsibility to deal more kindly with one another and to preserve and cherish the pale blue dot, the only home we’ve ever known.”

 THREE RECENT SPACEWALKS

Between February 21 and March 1 of this year, NASA astronauts Barry “Butch” Wilmore and Terry Virts, as well as European Space Agency astronaut Samantha Cristoforetti were all onboard the International Space Station (ISS).

Throughout their time on the ISS, Wilmore and Virts performed spacewalks under the orders of Cristoforreti, a spacewalk choreographer and robotic arm operator who remained onboard the ISS.

A spacewalk consists of putting on a spacesuit and literally walking out into space alone. It is very useful for performing repairs outside the ISS. The first spacewalk, or extravehicular activity, occurred on February 21 and consisted of rigging a series of power and data cables and routing 340 feet of cable outside the ISS. The spacewalk was supposed to take 6 hours and 30 minutes in total, but Wilmore and Virts took 11 minutes more.

The second spacewalk on February 25 consisted of a similar mission. Wilmore and Virts had to lay more cables and lubricate one of Canadarm2’s two Latching End Effectors, which serve as the base of the arm. All the rigging, routing and laying of cables were precisely for one goal: readying the ISS for a pair of International Docking Adapters, which are designed to let future capsules dock with the ISS. It was also a 6 hour and 30-minute planned spacewalk and this time the spacewalkers took 13 more minutes. Virts had water floating in his helmet, but it was only a small amount so he was fine.

The third spacewalk on March 1 was to install C2V2 equipment. Commercial spacecraft delivering crews to the space station will use it to dock with the station’s orbital laboratory.

 NASA’S DAWN MISSION

NASA launched Dawn in 2007 from Cape Canaveral. It was the first spacecraft to visit Vesta, one of the largest known asteroids in the solar system, entering its orbit in July 2011. Upon entering Ceres’ orbit on March 6, 2015, it became the first spacecraft to visit Ceres and to orbit two separate alien bodies.

Ceres and Pluto are both dwarf planets, but as Dawn entered Ceres’ orbit, and as New Horizons is starting to study Pluto, scientists will acquire new knowledge from these two missions and 2015 will be the year in which NASA makes its final decision: are Pluto and Ceres planets or only dwarf planets?

Unlike the larger planets, Ceres, like Pluto, “has not cleared the neighbourhood around its orbit,” according to the International Astronomical Union definition. This was one of the reasons Pluto got demoted from “planet” to “dwarf planet” in 2006.

In 2004, Hubble Space Telescope (HST) took a picture of Ceres and found a bright spot on its surface. It amazed everybody. That picture has been puzzling scientists ever since.

As Dawn spacecraft approached Ceres, it took a high-resolution picture that surprised scientists. Two bright spots sit one next to the other on the surface of the dwarf planet. The bright spot that HST saw on Ceres has a neighbour! ... and it is very mysterious. “This may be pointing to a volcano-like origin of the spots, but we will have to wait for better resolution before we can make such geologic interpretations,” explained Chris Russell, principal investigator for the Dawn mission.

As NASA scientists receive higher-quality images of Ceres, they hope to understand more about its origin and evolution, and also find out what these two bright spots are. “The brightest spot continues to be too small to resolve with our camera, but despite its size, it is brighter than anything else on Ceres. This is truly unexpected and still a mystery to us,” said Dr. Andreas Nathues of the Max Planck Institute for Solar System Research.

 MARS RISES IN POPULARITY

On February 7, NASA’s Mars Reconnaissance Orbiter completed its forty thousandth orbit of the planet, orbiting it since 2006.

Have you heard about the Mars One organisation, which plans on establishing a permanent human settlement on Mars? The plan is that every two years, starting in 2024, they’ll send a crew of four to colonise the planet, and crews will come back… Wait. Crews will never come back: they agreed to die on that unknown planet. Well, we shouldn’t get too excited about it. Yes, the Mars One organisation is very confident that their plan will work, but MIT scientists are less optimistic.

According to their study, a lot more machinery will be needed than the Mars One organization thought, racking up an initial bill of $4.5 billion USD. Crews on Mars will be totally dependent on what they are provided in the beginning and what they can squeeze out of Mars, like water from the soil. The problem lies in the fact that current technologies aren’t ready to squeeze anything out of Mars just yet.

MIT scientists predict the first fatality will occur on day 68 due to the absence of an adequate air system, which is way before the Mars One organization expected. If somehow crewmembers do not die from hypoxia for whatever reason, they may starve to death. An area of 200m3 will be needed for crops to keep astronauts healthy, which is four times larger than what the organization has proposed.

Let’s not say the Mars One mission is impossible, but perhaps that more concrete plans are needed to start taking this seriously. If you want, you can meet the hundred candidates left in the race to be part of Mars One’s crew on their website. They were chosen among a quarter million people and only 24 will make the final cut.

In other news, take a look at this footage of a mystery plume on Mars taken by amateur astronomers:

Interesting, isn’t it? “At about 250 kilometers, the division between the atmosphere and outer space is very thin, so the reported plumes are extremely unexpected,” said Agustin Sánchez-Lavega from País Vasco University. Some ideas have been considered to explain this mystery, such as: a reflective cloud of water/ice; the plumes may be related to an auroral emission; volcanic eruptions, etc. Of course, many think it is due to martians but astronomers don’t yet know the answer to that puzzling question: What is causing hundreds-of-kilometer-high plumes on Mars?

 COMETS: WHAT ARE THEY?

You may have seen Comet Lovejoy recently but do you actually know what a comet is?

A comet is a small solar system body made primarily of rock and covered in ice which passes very close to the sun at rapid speeds then at the very outmost part of the solar system due to its unconventional orbit. While getting closer to the Sun, it heats up and begins to release a bunch of gases trapped in its ice sometimes displaying a tail. More precisely, the heat evaporates the comet’s gases, causing it to emit microparticles (ions and electrons) and as the pressure of the sun’s radiation affects them they form a tail.

After passing by the Sun, their highly elliptical orbit makes them travel far out into the solar system making them freeze again. Some comets take several years to complete an orbit but others can take up to several millions of years.

How did they form? The entire solar system was created about 4.6 billion years ago by the collapse of a giant cloud of dust. A lot of matter merged into planets, but some remained in the outer level of the solar system where temperatures are cold enough to freeze water. With this far-away matter collapsing the comet came to be!

 LAUNCH SCHEDULE

In mid-February, the European Space Agency (ESA) launched their Intermediate Experimental Vehicle (IXV) for a 100-minute mission and it was a success. The IXV resembles a mini, 5-metre interpretation of the American Space Shuttle. It was testing new designs, new technologies and materials for possible future orbital flights. Note that it was the first time the ESA succeeded in a controlled re-entry. Congratulations ESA for a successful mission!

NASA’s Magnetospheric Multiscale (MMS) is scheduled to launch on March 12 and its primary mission is to study the mystery of magnetic fields around the Earth.

Perhaps the most entertaining launch of the month is planned on March 27 and it’s the launch of the crew of the ISS One Year mission. From Kazakhstan, Scott Kelly and Mikhail Kornienko will take off onboard a Soyuz Rocket on its way to the International Space Station and they’ll spend a whole year in space.

Every major launch is streamed live on the Internet and you can watch here.