Space

Fake photos and a problematic parachute: This month in space

By Benjamin Vermette

Space pictures aren’t always real

A lot of well-established and popular accounts on Facebook, Twitter and Tumblr recently posted this picture, claiming to be taken from Mars, and asserting that the three vertically-aligned lights in the sky were Earth, Venus and Jupiter. If you conducted a search for ‘mars skyline’ you’ll immediately see the image.

The problem with this photo is that it isn’t real.

Phil Plait is an American astronomer and he loves debunking ‘bad’ astronomy. He analyzed this image and maintains that the landscape color is too saturated. Compare the landscape of the photo to real ones taken by the Curiosity rover, and the difference is immediately clear.

Also the sky is the wrong color; Mars’ sky is a blue/grey.

The picture contains too many clouds and they also look like they’ve been digitally designed by software.

If that isn’t enough to prove the image wrong, well, let’s look deeper!

If you look very carefully, at the bottom left of the picture, you can see the letters ‘NE’, which stands for ‘northeast’. This acronym is what you see when you use software programs like SkySafari or Starry Night to display the sky. It points out the cardinal directions.

This means the picture is an image generated by a computer as a representation of a real scene.

However, if you want to see a real picture of Earth taken from Mars, the Spirit rover took one in 2004 (and, unsurprisingly, the real thing is much less visually dramatic).

A real photo depicting how Earth appears from Mars. (NASA photo). 

A real photo depicting how Earth appears from Mars. (NASA photo). 

RS-25 engine test

The fledgling NASA Space Launch System (SLS) is a new-generation rocket that will carry astronauts to asteroids and eventually to Mars in the 2030s.

Four RS-25 engines and two solid rocket boosters will carry SLS in the vacuum of interplanetary space, where no human has yet ventured.

The RS-25 engines are simply former space shuttle main engines operating at higher power levels to provide the additional thrust needed to power the SLS. “While we are using proven space shuttle hardware with these engines, SLS will have different performance requirements,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

On June 11 at NASA’s Stennis Space Center in Mississippi, a third static RS-25 fire test was performed, the previous ones being in January and at the end of May. For 500 seconds, the engine successfully burned and therefore completed a step towards the SLS first test launch, scheduled for 2017.

The next test was on June 25, also at Stennis Space Center — but this time the engine burned for 625 seconds.

Three additional tests were scheduled to occur sometime in July and August before the initial series is completed.

These tests are critical towards sending men to Mars and perhaps back on the moon, so let’s hope everything goes as planned.

Pluto’s pockmarks

Pluto is a mysterious world.

The NASA New Horizons probe was launched in 2006 and performed its Pluto flyby on July 14, 2015, becoming the first ever human-made object to visit the dwarf-planet.

As New Horizons got closer, a more detailed view of the small world was made available — and it surprised everyone.

(NASA photo). 

(NASA photo). 

The spots you see (picture on the right) originally appeared blurred together due to low resolution (picture on the left), however, as the Pluto-explorer probe got closer and took higher-resolution pictures, it was able to show four distinct spots.

On June 27, when the spots were discovered, some speculated they were impact sites, where meteorites would have impacted. But they look a bit too evenly spaced. And after all, they’re all over the same hemisphere of Pluto.

Some think the spots are geysers or other phenomenon arising from the idea that Pluto might be geologically active. 

However, the pictures are too poor in details to really identify the spots.

Watch out ISS, there’s rocket debris!

The International Space Station. (NASA photo). 

The International Space Station. (NASA photo). 

Carried into orbit by a space shuttle in 1998, the International Space Station (ISS) keeps supporting high-end scientific research. This $150-billion laboratory is the product of more than 17 years of nation-collaboration, and this is why it needs to be protected.

On June 8, the ISS conducted a pre-determined debris avoidance manoeuvre, to get out of the way of a used Minotaur rocket part. The debris was tracked the morning before, allowing ISS’ teams a day to gather additional data.

On Monday, tracking data showed that the path of the ISS was not sufficiently changed, so the rocket debris still presented a menace. Therefore, the ISS’ teams decided to use the thrusters of Progress M-26M, a capsule docked at the station, to clear the debris from entering the imaginary safety zone around the ISS, where no debris are ‘allowed’ to enter.

Progress’ engines burned for about 5 minutes, putting the ISS in a slightly higher orbit and increasing its velocity by 0.3 metres per second. 

A good team effort resulted in a successful debris avoidance manoeuvre, avoiding a collision with a part of a used Minotaur rocket, launched from NASA Wallops, Virginia, in November 2013.

Lately, a great number of debris and satellites are dropping from their original orbit and may present a danger to the ISS.

NASA’s new Mars lander test: Parachute failure

The Low-Density Supersonic Decelerator (LDSD) program is projected to cost about $290 million (CAD).

LDSD is a 3.4-ton lander designed to allow NASA carrying more massive payloads on the surface of Mars. LDSD will carry heavy rovers and payload at supersonic speed in Mars’ atmosphere, decelerate it and perform a soft landing on the red planet’s surface.

On June 8, NASA tested for the second time its ‘flying saucer’, as they like to call LDSD. High above Hawaii, at 180,000 feet of altitude to be more precise, LDSD fired solid-fuelled Star 48 retro-rockets, designed by Orbital ATK, to slow the lander from Mach 4 to Mach 2.35, which is a safe speed to deploy a giant 100-foot-wide supersonic parachute.

The thing is, the parachute did not deploy as expected. Okay, yes it did, however, one second after deployment, the chute ripped apart in the supersonic airflow. “A preliminary look at our loads data indicate that the parachute developed full, or nearly full, drag up to the point where that damage can be observed,” said Ian Clark, the experiment’s principal investigator at NASA’s Jet Propulsion Laboratory. A camera onboard the lander “shows what looks to be a largely, if not fully, intact parachute at full inflation,” Clark added.

The lander, being retrieved from the Pacific Ocean. (NASA photo).

The lander, being retrieved from the Pacific Ocean. (NASA photo).

The splashdown in the Pacific Ocean damaged the 20-foot-wide lander, which has gained a speed higher than expected, due to the ripped chute.

Despite the parachute failure, NASA is confident in finding a solution to its problem. “We very much want to have these failures occur here in our testing on Earth rather than at Mars,” said Mark Adler, program manager for NASA’s LDSD project. “So it’s a success in that we’re able to understand and learn more about the parachutes, so we can get confidence and have highly reliable parachute for when we have a large mission going to Mars, where we can’t do anything about it.”

LDSD’s high-end technology is just an example of how NASA has an ambitious future on Mars.

A month of successes and setbacks in Space

By Benjamin Vermette

Progress M-27M Gone Wrong

On April 28, 2015, an uncrewed Progress capsule was launched from Kazakhstan by the Russian Space Agency (Roscosmos). The mission, dubbed Progress M-27M, was meant to deliver 2,357 kg of food and about 800 kg of other material to the International Space Station. However, as the title indicates, the capsule did not manage to deliver the expected shipment.

Following lift-off on a Soyuz rocket, the capsule started spinning out of control as it entered orbit.

 

(You can see the Earth and the sun about once every 3 seconds)

At launch, every system was nominal. Shortly after, when separation from the third stage occurred, ground controllers immediately knew something was wrong: only two of the five communication antennas had deployed. Only moments after that, the Russian Progress capsule started spinning out.  

  M-27m Progress burning up in Earth's atmosphere

  M-27m Progress burning up in Earth's atmosphere

On April 28, the problem didn’t seem lethal; Roscosmos’ officials delayed Progress’ rendezvous with the ISS by about five days (it was originally planned to dock about six hours after launch). Afterwards, they learned the spacecraft was spinning; as a consequence the docking was delayed indefinitely until the problems could be fixed.

The Russian Space Agency tried to find a solution, in vain. A few days later the mission was declared a failure, and the spacecraft was condemned to a fiery death (a fall and combustion in Earth’s atmosphere).

On May 8, the Progress spacecraft re-entered Earth’s atmosphere. The capsule was big, so not all the material was burned up.

“Given the fact that material inside is somewhat protected during the early parts of re-entry, maybe somewhere [between] 2,500 to 3,500 pounds (on a total of more than 7000 pounds) of material may have survived,” said Bill Ailor, an expert on spacecraft re-entries. However, “much of this material had itself been broken into smaller pieces and spread along a footprint several hundred miles long,” he added.

What caused the capsule’s demise? Roscosmos doesn’t know for certain, but believes it was a small explosion or a tank rupture.

In Video: SpaceX Abort Test

SpaceX is a private ‘space’ company helping resupply the International Space Station (ISS), and its success is growing. At the end of May, it gained the rights to launch US government satellites into space. On May 21, its Dragon capsule returned safely to Earth after a month-long stay on the ISS.

However, the most impressive and decisive thing it accomplished last month, was its ‘pad-abort’ test on May 6. This test was to determine whether SpaceX could carry astronauts into space in the future (it can’t right now because of regulations, just like any other private company).

The experiment consisted of testing its pad-abort.

Imagine you’re an astronaut and you’re on the launch pad in a SpaceX rocket about to be sent in orbit. Suddenly, everything goes wrong. Let’s say the rocket is on fire and it’s about to explode. You don’t have time to get out of it and run away, so you push a button – okay, it may be a little more complicated than that – to activate the pad-abort. Pushing that button will activate small rockets on your capsule, which will launch you into the air, far away from the rest of the about-to-explode rocket. 

Included is a video of the May 6 SpaceX pad-abort test. Tip: try not to blink, because the capsule goes incredibly fast. The water dump you see at the beginning is to suppress fire and to ‘absorb’ the vibrations, in a way.

Note: had astronauts been onboard, accelerating from 0-160 km/h in 1.2 seconds, they would have felt 6Gs (that’s six times their weight) crushing them into their seats.

The test was impressive, but above all, it was a critical milestone for SpaceX in its journey to being able to send commercial crew in space alongside NASA. Congrats SpaceX and Elon Musk for a successful flight!  

No, A Particular Planetary Alignment Won’t Cause An Earthquake

On May 28, a huge 9.8 magnitude earthquake shook California.

Okay, no it didn’t. But according to one YouTube personality, it was supposed to — all because of a potential ‘planetary alignment’ (which also didn’t come to pass). But it did cause some speculation as to whether or not a planetary alignment could actually cause an earthquake here on earth.

This whole story comes from one somewhat famous YouTube account, Ditrianum Media. I would have included the video where the host explains, in a sincere way, the famous natural catastrophe that would have occurred on May 28, 2015, in California. However, on May 29 – the day after the prophesized earthquake – this video was deleted from the Internet.

Phil Plait, an American astronomer, has done the math and discovered that all of the planets in our solar system combined have a gravitational influence on Earth about 50 times weaker than the moon does. The moon, it should be noted, doesn’t trigger earthquakes.

In the video, the speaker claims the planets will “energize” Earth. However he gives no precise information on what that means. And in astronomy, there is no such thing as planets ‘energizing’ each other.

The YouTube host even implied Nostradamus being part of the magic recipe causing the seism.

In conclusion, rest assured that planetary alignments can’t cause earthquakes, they don’t make you float, and neither can the supermoon. And astrology is baloney, to be polite.

X-37B And LightSail

On May 20, an Atlas V rocket launched from Cape Canaveral Air Force Station in Florida, carrying the mysterious and top-secret Boeing X-37B space plane for its fourth spaceflight, as well as the promising LightSail satellite.

The X-37B is an US Air Force classified spacecraft that resembles the Space Shuttle. Here is everything we know about it (source: Space Shuttle Almanac).

fo0523_boeing_x_37b_940_ab5.jpg

 

However, we know a lot more about LightSail, a technology developed by the Planetary Society, of which Bill Nye (The Science Guy) is the CEO. Packed in a sandwich-sized CubeSat in Atlas V’s payload, the prototype LightSail carries no fuel. Literally, sunlight propels this technological achievement.  

Actually, light pushes on objects — this is call radiation pressure — you weigh more during daytime than at night (don’t worry, it’s not even close to a pound). It turns out, in space, where there is no atmosphere to counteract light, the pressure is enough to push a sail 20 times thinner than a human hair. Of course, the sail is attached to a small satellite.  There you have it; a space probe powered by sunlight. The mission is just to test the sail (and as of today, everything is going as planned) and to “empower the world’s citizens to advance space science and exploration,” according to the Planetary Society.

Let’s hope everything goes well and perhaps the prototype will show humanity a new way of exploring space. High five, scientists!

How NASA Helps Nepal Disaster’s Victims

On April 25, a 7.9 magnitude earthquake occurred in Nepal, killing more than 8,000 people.

Even though NASA is often thought of as just a ‘space’ agency, its technologies can help disaster victims, and it did in Nepal.

A NASA device called FINDER (Finding Individuals for Disaster and Emergency Response) uses microwave radars to detect heartbeats of animals (usually humans) trapped in the aftermath of a seism and other natural catastrophes.

FINDER helped find and rescue four men trapped under 10 feet of bricks, mud and other debris in Nepal.

“Of course, no one wants disasters to occur, but tools like this are designed to help when our worst nightmares do happen.” said Dr. Reginald Brothers, under-secretary for Science and Technology at the US Department of Homeland Security. “I am proud that we were able to provide the tools to help rescue these four men.”

The four rescued had been trapped under these bricks for days in the shaken town of Chautara. Using the life-saving gadget, rescuers were able to detect two heartbeats under two different structures and in that way were able to save the men.

FINDER has proven its capabilities to detect heartbeat from people hidden under 30 feet of light debris, 20 feet of concrete and at a distance of 100 feet in open space.

“FINDER exemplifies how technology designed for space exploration has profound impacts to life on Earth,” said Dr. David Miller, NASA’s chief technologist.

As a matter of fact, this NASA-gadget has solidly supported its contractor’s slogan: ‘Off the Earth for the Earth.’